Reliable screening for a pain-protective haplotype in the GTP cyclohydrolase 1 gene (GCH1) through the use of 3 or fewer single nucleotide polymorphisms.
نویسندگان
چکیده
BACKGROUND A haplotype in the GTP cyclohydrolase 1 (dopa-responsive dystonia) gene (GCH1) is associated with decreased persistent pain. The aim of the present study was to develop a screening method for the pain-protective haplotype. METHODS Complete genetic information for all 15 GCH1 DNA positions constituting the pain-protective GCH1 haplotype was available from 278 patients. In silico analyses, including discriminant analysis of the most frequent haplotypes, identified distinctive DNA positions that allow detection of the pain-protective haplotype at high sensitivity and specificity with the smallest possible number of DNA positions. Pyrosequencing(trade mark) assays were subsequently developed for these DNA positions, established with 662 DNA samples from healthy volunteers, and prospectively validated with a random selection of DNA samples genotyped for all 15 DNA positions. RESULTS Diagnosis of the pain-protective GCH1 haplotype was possible with 100% sensitivity and specificity by screening for just 3 GCH1 genetic variants that span the entire DNA range of the haplotype: c.-9610G>A (dbSNP rs8007267G>A) in the 5' untranslated region, c.343 + 8900A>T (dbSNP rs3783641A>T) in intron 1, and c.*4279 (dbSNP rs10483639C>G) in the 3' untranslated region. Test sensitivity and specificity were still >95% with 2 or even just 1 of these GCH1 DNA positions. CONCLUSIONS In silico analysis of complex GCH1 gene haplotypes reduced the requisite number of tested DNA positions from 15 to 3 while maintaining the reliability, specificity, and sensitivity of the genetic diagnosis. This screening method could reduce laboratory diagnostic efforts and facilitate investigations of the pain-protective GCH1 haplotype.
منابع مشابه
Does the pain-protective GTP cyclohydrolase haplotype significantly alter the pattern or severity of pain in humans with chronic pancreatitis?
BACKGROUND Pain is often a dominant clinical feature of chronic pancreatitis but the frequency and severity is highly variable between subjects. We hypothesized that genetic polymorphisms contribute to variations in clinical pain patterns. Since genetic variations in the GTP cyclohydrolase (GCH1) gene have been reported to protect some patients from pain, we investigated the effect of the "pain...
متن کاملTackling Inherited Blindness
Objectives: To assess the effect of variations in GTP cyclohydrolase gene (GCH1) on pain sensitivity in humans. Methods: Thermal and cold pain sensitivity were evaluated in a cohort of 735 healthy volunteers. Among this cohort, the clinical pain responses of 221 subjects after the surgical removal of impacted third molars were evaluated. Genotyping was done for 38 single nucleotide polymorphism...
متن کاملLack of influence of GTP cyclohydrolase gene (GCH1) variations on pain sensitivity in humans
OBJECTIVES To assess the effect of variations in GTP cyclohydrolase gene (GCH1) on pain sensitivity in humans. METHODS Thermal and cold pain sensitivity were evaluated in a cohort of 735 healthy volunteers. Among this cohort, the clinical pain responses of 221 subjects after the surgical removal of impacted third molars were evaluated. Genotyping was done for 38 single nucleotide polymorphism...
متن کاملDo genetic predictors of pain sensitivity associate with persistent widespread pain?
Genetic risk factors for pain sensitivity may also play a role in susceptibility to chronic pain disorders, in which subjects have low pain thresholds. The aim of this study was to determine if proposed functional single nucleotide polymorphisms (SNPs) in the GTP cyclohydrolase (GCH1) and mu opioid receptor (OPRM1) genes previously associated with pain sensitivity affect susceptibility to chron...
متن کاملImpaired behavioural pain responses in hph-1 mice with inherited deficiency in GTP cyclohydrolase 1 in models of inflammatory pain
BACKGROUND GTP cyclohydrolase 1 (GTP-CH1), the rate-limiting enzyme in the synthesis of tetrahydrobiopterin (BH4), encoded by the GCH1 gene, has been implicated in the development and maintenance of inflammatory pain in rats. In humans, homozygous carriers of a "pain-protective" (PP) haplotype of the GCH1 gene have been identified exhibiting lower pain sensitivity, but only following pain sensi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical chemistry
دوره 53 6 شماره
صفحات -
تاریخ انتشار 2007